Atypical canine Hypoadreno-corticism
Addison’s disease may not be the first diagnosis that comes to mind when a dog with gastrointestinal signs presents, but this possibility should not be dismissed, as Romy Heilmann describes.
Published 28/06/2023
Also available in Français , Deutsch , Italiano , Português , Español , ภาษาไทย and 한국어
Fecal microbiota transplantation is starting to be seen as a viable option to treat various acute and chronic gastrointestinal problems in dogs, as Linda Toresson explains.
Fecal microbiota transplantation (FMT) can be used to improve an individual’s intestinal microbiome, and is indicated for various gastrointestinal disorders.
FMT is effective as adjunctive therapy in puppies with parvovirus infection and appears to be successful in treating some dogs with chronic enteropathies that have not responded to other therapies.
There is currently very little experience regarding the use of FMT in cats.
Evidence-based protocols for FMT in veterinary medicine are lacking, but guidelines are currently being prepared by an international group.
O transplante de microbiota fecal é uma técnica que envolve a transferência do microbioma intestinal de um doador saudável para um receptor enfermo, a fim de restabelecer o microbioma deste último e diminuir a gravidade da doença. Apesar de ter sido mencionada em um livro chinês de emergências médicas em 320 d.C., essa técnica raramente foi usada na medicina tradicional até o início deste século, quando o conhecimento do microbioma intestinal e da disbiose passou por uma considerável expansão. Em seres humanos, as condições gastrointestinais (GI) são, sem dúvida, o motivo mais comum para a realização do transplante de microbiota fecal, embora vários estudos tenham sido realizados com o uso da técnica para outras indicações, incluindo distúrbios hepáticos, síndrome metabólica, tratamento de microrganismos resistentes a antibióticos, transtornos psiquiátricos e obesidade 1,2. Em animais, o transplante de microbiota fecal provou ter um efeito benéfico em filhotes caninos com enterite por parvovírus 3 e também parece ser promissor para cães com diarreia crônica 4,5, mas até o momento há apenas o relato de um único caso felino disponível 6. Atualmente, não há diretrizes baseadas em evidências ou qualquer consenso sobre a triagem de doadores, a dosagem do transplante de microbiota fecal ou o melhor protocolo a ser adotado para animais; entretanto, um grupo recém-formado de especialistas internacionais, o Companion Animal Fecal Bank Consortium, está trabalhando em tais diretrizes, com resultados preliminares previstos para este ano. Apesar da falta de consenso, o transplante de microbiota fecal é considerado um tratamento bastante seguro para cães com distúrbios gastrointestinais agudos ou crônicos e tem o potencial de diminuir a gravidade da doença em muitos casos. Este artigo irá revisar vários relatos sobre o uso de transplante de microbiota fecal em cães com distúrbios gastrointestinais, apresentar uma descrição do procedimento e abordar alguns casos clínicos.
Conforme observado anteriormente, o efeito benéfico do transplante de microbiota fecal foi demonstrado em vários estudos. Em um estudo controlado randomizado, analisou-se o quadro de enterite por parvovírus em filhotes caninos 3, em que 66 animais acometidos por esse vírus em dois hospitais veterinários foram tratados com “medidas-padrão” apenas ou com tratamentos-padrão plus (+) transplante de microbiota fecal. O transplante de microbiota fecal reduziu significativamente os períodos de hospitalização e o tempo de recuperação (tempo médio de 3 dias versus 6 dias no grupo-controle), e a sobrevida foi maior nos cães tratados com transplante de microbiota fecal (26/33, 79%), em comparação com o outro grupo (21/33, 64%), mas a diferença não foi significativa do ponto de vista estatístico. Em outro estudo de 18 cães com diarreia aguda, um único transplante de microbiota fecal no momento da apresentação desses animais promoveu uma melhora dos escores fecais no mesmo grau que aquele obtido através do tratamento com metronidazol, conforme avaliado no dia 7; no dia 28, os cães tratados com transplante de microbiota fecal apresentaram uma consistência significativamente melhor das fezes, em comparação ao grupo tratado com metronidazol 7. Além disso, o transplante de microbiota fecal ajudou a restaurar o microbioma intestinal do primeiro grupo para níveis saudáveis no dia 28, enquanto os cães tratados com metronidazol ainda apresentavam disbiose significativa neste momento, quando comparados àqueles submetidos ao transplante e a cães saudáveis. Contudo, em um pequeno estudo-piloto controlado por placebo de 8 cães com diarreia hemorrágica aguda, nenhum benefício clínico foi observado em cães submetidos a transplante de microbiota fecal, em comparação com controles tratados com placebo 8.
Com relação a cães com diarreia crônica e/ou enteropatia crônica, foram publicados um único relato de caso e uma única série de casos de tratamento bem-sucedido com transplante de microbiota fecal, bem como dois resumos científicos 4,5,9,10. Na série de casos, foram incluídos 9 cães com doença intestinal inflamatória refratária, irresponsivos a ensaios alimentares, antibióticos, corticosteroides ou ciclosporina 4. Uma diminuição significativa no índice de atividade da doença intestinal inflamatória canina (11 – Quadro 1) pós-transplante de microbiota fecal foi observada em todos os cães, bem como um aumento expressivo de Fusobacterium spp. fecal. Sete de 9 cães tinham concentrações fecais mais baixas de Fusobacterium, em comparação com os cães doadores antes do transplante de microbiota fecal. O Fusobacterium é um dos principais produtores de ácidos graxos de cadeia curta e um componente importante de um microbioma intestinal canino saudável, enquanto a presença de disbiose e os níveis reduzidos de microrganismos intestinais produtores desses ácidos graxos são muito comuns em enteropatias caninas crônicas (Quadro 2) 12. A disbiose também estava presente em um estudo de 16 cães com diarreia crônica; esses cães foram submetidos a único transplante de microbiota fecal e, 1 semana após o tratamento, houve uma melhora significativa no índice de disbiose fecal* 10. O estudo retrospectivo de base dos outros resumos 5,9 é abordado com mais detalhes na próxima seção.
Quadro 1. O sistema de pontuação do índice de atividade da doença intestinal inflamatória canina. Seis parâmetros são pontuados, cada um com uma escala de 0-3, em que 0 = normal, 1 = alterações leves (brandas), 2 = alterações moderadas e 3 = alterações graves. As pontuações são somadas para fornecer o índice da atividade da doença intestinal inflamatória canina.
|
|
||
O escore global indica o grau de doença intestinal inflamatória presente: | |||
0-3 | 4-5 | 6-8 | 9 or above |
Doença insignificante do ponto de vista clínico | Doença intestinal inflamatória leve | Doença intestinal inflamatória moderada | Doença intestinal inflamatória grave |
Quadro 2. O que são os ácidos graxos de cadeia curta?
As bactérias Faecalibacterium, Fusobacterium, Blautia e Turicibacter são importantes produtoras de ácidos graxos de cadeia curta. Esses ácidos graxos podem ter propriedades anti-inflamatórias no intestino, fornecer energia aos colonócitos, aumentar a função da barreira epitelial e reforçar as junções estreitas, além de contribuir para a motilidade intestinal normal. Os níveis de microrganismos intestinais produtores de ácidos graxos de cadeia curta, bem como de Clostridium hiranonis (que converte ácidos biliares primários em ácidos biliares secundários no intestino), encontram-se frequentemente diminuídos em cães com enteropatias crônicas 12. |
Informações muito limitadas estão disponíveis sobre o uso do transplante de microbiota fecal em gatos (Figura 1); atualmente, há apenas um único relato de caso de um gato com colite ulcerativa não responsiva que respondeu ao transplante de microbiota fecal 6.
A eficácia do transplante de microbiota fecal em casos de enteropatia crônica foi demonstrada pelo estudo descrito a seguir. Esse estudo envolveu uma revisão retrospectiva de dados de uma coorte (grupo) de 36 cães (com idade de 0,6 a 13 anos, mediana de 6,3) com enteropatia crônica submetidos a transplante de microbiota fecal como terapia adjuvante no hospital onde a autora trabalha entre 2019 e 2021 5. Todos os cães tinham demonstrado uma resposta insatisfatória ou nula aos tratamentos-padrão baseados em evidências e, para a inclusão no estudo, foi necessário um período de acompanhamento de pelo menos 3 meses pós-transplante de microbiota fecal. Os critérios de exclusão foram os seguintes: (i) aumento da dose de qualquer terapia de manutenção atual durante o período analisado (ii) presença de parasitas intestinais, ou (iii) início de novo tratamento imunossupressor ou dieta simultaneamente com o transplante de microbiota fecal. O transplante de microbiota fecal foi administrado através de um protocolo padronizado para todos os cães, utilizando dois cães doadores diferentes, ambos com um índice de disbiose* abaixo de 2 (normobiose) 12.
Todos os 36 cães foram tratados para enteropatia crônica entre 1-110 meses (mediana de 21) na inclusão, e as principais queixas eram diarreia refratária (28/36), letargia (15/36) e vários efeitos colaterais de medicação (10/36). Trinta e quatro de 36 cães foram tratados com corticosteroides na inclusão, e vinte de 36 receberam agentes imunossupressores de segunda linha, incluindo micofenolato, clorambucila, ciclosporina ou azatioprina. Vinte e seis de 36 cães foram alimentados com uma dieta hidrolisada, oito de 36 com uma dieta de proteína única e 2 com uma dieta “intestinal” altamente digerível.
Trinta e quatro cães receberam entre 2 e 5 transplantes de microbiota fecal, mas a maioria desses (26 cães) recebeu 3 tratamentos. Os outros 2 cães, ambos não respondedores, receberam um transplante de microbiota fecal cada um. A melhora clínica com base no índice de atividade da doença intestinal inflamatória canina foi observada em 75% dos cães (27/36) após o tratamento, e as melhorias mais comuns foram o incremento do nível de atividade (20/36), a melhora dos escores fecais (19/36) e o ganho de peso e/ou o aumento do apetite (10/36). Este último grupo havia mostrado anteriormente uma falta de apetite e/ou um escore de condição corporal abaixo do normal. A dose de manutenção de corticosteroide pôde ser gradativamente reduzida em 6 dos cães para um nível mais baixo do que havia sido possível antes do transplante de microbiota fecal. Um cão que já havia desenvolvido crises frequentes de diarreia que só respondiam à tilosina não precisou de antibióticos por 21 meses após o terceiro transplante de microbiota fecal (caso n.2 descrito na próxima seção), enquanto outro cão que foi previamente tratado com metronidazol e agentes imunomoduladores pôde interromper o metronidazol após o transplante de microbiota fecal.
O índice de atividade da doença intestinal inflamatória canina na inclusão era de 2-17 (mediana de 6) e isso diminuiu significativamente para 1-9 (mediana de 2) durante o primeiro mês após o último transplante de microbiota fecal. No momento da inclusão, havia amostras fecais disponíveis para análise do índice de disbiose* (intervalo de referência ≤ 0) de 23 cães. Os cães que não responderam ao transplante de microbiota fecal tiveram um resultado significativamente maior, em comparação com os bons respondedores na inclusão. Foi demonstrado que um alto índice de disbiose se correlaciona com a diminuição da diversidade microbiana, com menos táxons bacterianos presentes (em pessoas, a baixa diversidade microbiana antes do transplante de microbiota fecal é um fator prognóstico negativo para responder a esse transplante 13). Os efeitos colaterais foram leves e incomuns; seis de 36 cães (3 respondedores e 3 não respondedores) tiveram diarreia dentro de 48 horas após o transplante de microbiota fecal, e dois desses cães também apresentaram sinais clínicos de dor abdominal ou retal em até 24 horas pós-transplante. Todos os efeitos colaterais foram, no entanto, autolimitantes.
Este estudo tem, entretanto, várias limitações. Além de se tratar de um estudo retrospectivo, o microbioma e o metaboloma não foram acompanhados ao longo do tempo, e não houve inclusão de grupo-controle. Apesar disso, os resultados sugerem que o transplante de microbiota fecal possa ser utilizado como terapia adjuvante em cães com enteropatia crônica pouco responsiva.
Linda Toresson
Conforme mencionado anteriormente, até o momento não há consenso nem diretrizes baseadas em evidências sobre a triagem de doadores ou o melhor protocolo para o transplante de microbiota fecal 14. As recomendações a seguir são formuladas com base na experiência clínica pessoal da autora e em estudos recentes 5,7.
Um animal doador deve ser um indivíduo clinicamente saudável, com um escore de condição corporal normal e um escore no índice de atividade da doença intestinal inflamatória canina de 0-3 (isto é, sem sinais clínicos de doença gastrointestinal crônica) 11; basicamente, o objetivo é encontrar um doador com muitos microrganismos benéficos e nenhum patógeno fecal em potencial. Além disso, o animal não deve ser alimentado com uma dieta de alimentos crus, não deve estar recebendo nenhuma medicação de longo prazo e não deve ter tomado antibióticos por pelo menos 6 meses, de preferência por mais tempo. Para os doadores felinos, é preferível o uso de gatos indoor (ou seja, daqueles que vivem apenas em ambientes fechados) para evitar a exposição a parasitas de pequenos roedores, etc. Parasitas intestinais, inclusive Giardia intestinalis, devem ser excluídos de todos os doadores em potencial. To ensure high levels of beneficial microbes, such as short-chain fatty acid (SCFA)-producing bacteria and Clostridium hiranonis, potential donors should be screened with the canine or feline dysbiosis index* 12. The fecal canine donors at the author’s hospital are also free from Salmonella spp., Campylobacter jejuni, Clostridioides difficile and Clostridium perfringens enterotoxinogen, including Clostridium perfringens netF-toxin. However, such extensive screening of donors may not be necessary – it is likely most important to exclude intestinal parasites and ensure high levels of beneficial microbes, as microbial composition and diversity of the donor transplant is vital for successful treatment of ulcerative colitis in humans 13. Furthermore, this study reported that recipients with a good response to FMT had increased fecal microbial diversity both before and after FMT compared to non-responders, as well as increased fecal levels of SCFAs and secondary bile acids post FMT.
The amount of feces used for FMT in dogs can vary considerably 14. The author currently uses 5 g of donor feces per kg bodyweight of the recipient for dogs up to 30 kg and cats; for recipient dogs over 30 kg, 2-3 g of feces per kg bodyweight is used. This is a relatively large amount, but has been associated with a good outcome in the majority of dogs with CE 5. Food should be withheld from the recipient for 6 hours prior to FMT, but water is allowed, and the recipient dog should be walked for 30-40 minutes just prior to the procedure in order to defecate. A low dose of acepromazine (0.1 mg/kg SC) can be given 15 minutes beforehand unless contraindicated; although some clinicians omit this if the recipient is calm, premedication usually makes it easier for the dog to relax and rest after the procedure, allowing a long contact time between the transplant and the colonic mucosa. In the author’s experience, cats need to be fully sedated prior to FMT.
The fecal transplant can be delivered via the upper or lower GI tract. In people, the route of administration does not appear to be outcome-related for GI indications (recurrent Clostridioides difficile infection, ulcerative colitis and Crohn’s disease) 15,16,17, but in published reports on FMT in dogs, the rectal route is by far the more commonly used delivery method, using a retention enema or colonoscopy.
Fresh or frozen feces can be employed; if the latter, it should first be thawed overnight in a fridge. (In people with recurrent or refractory Clostridioides difficile-infection, FMT using frozen feces has been shown to be as effective as fresh material 18). The feces should be blended and mixed with sterile saline (20-120 mL) until a desirable texture is achieved, before being filtered through a sieve. The filtrate is then aspirated into 60 mL sterile syringe(s) and either left at room temperature, or warmed to body temperature in a water bath prior to use, since it is highly unpleasant for the recipient to receive a large volume directly from the fridge. The transplant is administered rectally using a 12-16 FG catheter 7. The catheter should be well lubricated before insertion, with the tip placed approximately at the level of the last rib (Figure 2). FMT can be given with the dog in either a standing position, sternal or lateral recumbency (Figure 3). The owner is then instructed to minimize the dog´s physical exercise for 4-6 hours in order to increase the contact time between the intestinal mucosa and the transplanted feces. Food should also be withheld for the same period, since the presence of food in the stomach stimulates colonic contractions. At the author´s hospital, the standard protocol (Box 3) is for dogs with CE to receive a series of three FMT’s, with 10-20 days interval between each, as experience has shown that one treatment is often ineffective in reducing clinical signs in many dogs, or not lasting long enough. However, if no beneficial effects have been noticed after two treatments, a third FMT is not given 5.
Box 3. The author’s preferred FMT protocol.
|
Alma (Figure 4) is a spayed female Golden Retriever who developed a steroid-responsive CE at 3 years of age. At the age of 5 she was on a maintenance dose of oral methylprednisolone (0.4 mg/kg EOD) and a hydrolyzed, soy-based diet. This controlled the clinical signs of CE to some extent, but she was still suffering from lethargy, signs of abdominal pain, occasional vomiting, diarrhea and a subnormal body condition score (BCS) of 3.5/9 (15% below ideal BCS), with mild to moderate muscle atrophy. Several attempts were made to decrease the methylprednisolone dose, but each time the clinical signs worsened. Treatment with mycophenolate was started as an add-on immunosuppressive, but this did not allow any reduction in the methylprednisolone dose. The owner agreed to try FMT as adjunctive therapy, and three separate FMTs were given as a rectal retention enema with 10-14 days intervals. Alma showed a very positive and rapid clinical response; she was much more active and alert, played more with other dogs, and gained 2 kg in weight, allowing a gradual tapering of methylprednisolone to 0.2 mg/kg EOD. Fecal analysis showed that Alma had a dysbiosis index* of -1.2 (normobiosis) at baseline, but she had marked alterations of fecal lipid profiles, such as sterols and fatty acids, and the most striking abnormality was a fecal coprostanol concentration 24 times that of a normal dog. Cholesterol in the gut lumen is metabolized to coprostanol by intestinal microbes, and this compound is poorly absorbed from the gut 19, so Alma had an exaggerated conversion of cholesterol to coprostanol. Two weeks after FMT 1, the fecal lipid profile was normalized, which correlated with normalization of her BCS. The positive effects of FMT lasted for 7 months, but then Alma again became lethargic and lost weight; however, a second series of FMT and a temporarily increased dose of methylprednisolone reversed the clinical signs.
Moltas is an intact male German Shepherd that has suffered from chronic, partially refractory diarrhea all his life. He also suffers from atopic dermatitis, recurrent pyoderma and chronic otitis. At 1.5 years of age, he was clinically fairly stable on high daily doses of prednisolone, but he had a BCS of 3/9 and tapering of the prednisolone led to worsening of clinical signs. Azathioprine had no effect, and multiple dietary trials, including a highly digestible diet and two different single protein diets, were unsuccessful. During the worst flare ups of diarrhea, Moltas did respond to tylosin or metronidazole, and at this point he was referred to the author. He was started on a hydrolyzed novel protein diet and cyclosporine, which had some effect, allowing for some tapering of the prednisolone. At 2.5 years of age the cyclosporine was replaced with chlorambucil, which led to a clinical improvement and weight gain to a normal BCS. During chlorambucil treatment, prednisolone could be replaced with 3 mg budesonide every other day (EOD), which has fewer side effects. Moltas was also treated with allergen-specific immunotherapy, twice weekly medical baths with chlorhexidine, and 4 mg methylprednisolone EOD as a maintenance dose for his skin condition. During the following 2.5 years Moltas was relatively stable, but had flare-ups of diarrhea every few months. Minor exacerbations could be controlled with a temporary increase in the dose of budesonide (3 mg daily for 3-10 days). More severe flare-ups occurred roughly every six months, and these did not respond to immunosuppression, so Moltas was prescribed tylosin (25 mg/kg q24h for 7 days). At 5 years of age, the GI signs had increased, such that there were monthly flare-ups of diarrhea, regurgitation and lethargy. This increased disease activity had prompted increased polypharmacy, with more frequent use of tylosin alongside budesonide (3 mg EOD), methylprednisolone (4 mg EOD), chlorambucil (3 mg EOD) and cobalamin (1 mg orally once weekly).
On clinical examination, marked abdominal pain was obvious on palpation. Serum biochemistry revealed a mild hypoalbuminemia (28 g/L; reference interval 30-45 g/L) and mild-moderate decrease in total protein (51 g/L; reference interval 61-75 g/L). These parameters had been within the reference range at the last check-up six months previously. Serum cobalamin concentrations had also dropped significantly to 221 pmol/L (reference range 180-708 pmol/L), despite weekly maintenance therapy. Fecal samples were negative for intestinal parasites.
Moltas was treated with 1 mg of cobalamin EOD and three FMTs via rectal retention enemas at 14-day intervals. After FMT 1, the regurgitation episodes stopped, and after FMT 2 the fecal quality improved and Moltas became more playful and active (Figure 5). After the third FMT, diarrhea had stopped and abdominal palpation did not induce signs of pain. Furthermore, serum albumin and total protein concentrations had increased and were back within the reference range. During the next 21 months, Moltas was much more stable, although there were mild flare-ups of diarrhea every third month, which lasted for 1-2 days and were self-limiting. After 21 months, the fecal quality became progressively worse, and a severe flare-up occurred. Increasing the dose of corticosteroids had only a limited effect, and Moltas was again treated with tylosin for a week, followed by a second series of 3 FMTs, which had the same positive effect as the first treatment.
Harold is an intact male French Bulldog (Figure 6) who had a persistent Giardia intestinalis infection as a puppy and young dog. The infection finally cleared, but diarrhea, melena and weight loss continued. The referring vet had treated Harold with metronidazole and corticosteroids, which only led to marginal improvement, and full-thickness surgical biopsies from the small intestine and the colon were taken at a year of age. The histopathologic diagnosis was granulomatous colitis and moderate lymphocytic-plasmacytic enteritis with moderate lacteal dilation. Sulfasalazine was added to the treatment without any effect, so Harold was referred to the GI-service at the author’s hospital at the age of 1.5 years. At this point he was slightly lethargic and had a BCS of 3/9. He was started on a 6-week course of enrofloxacin for granulomatous colitis, which quickly led to resolution of clinical signs, including weight gain. At a check-up just after the treatment finished, Harold was asymptomatic and had a BCS of 4/9. However, 3 weeks later, diarrhea (of predominantly colitis type) and vomiting recurred. As no colonic biopsies had been sent for culture and sensitivity testing when the biopsies were collected, it was unknown if Harold was already harboring multidrug-resistant E. coli prior to enrofloxacin treatment. Since resistance to fluoroquinolones develops rapidly during treatment, it was very likely that multidrug-resistant E. coli was now part of his intestinal microbiome 20. In Boxer dogs with granulomatous colitis it has been shown that the presence of fluoroquinolone-resistant E. coli is associated with failure to respond fully to enrofloxacin treatment, as well as concurrent antimicrobial resistance to chloramphenicol, rifampicin, and trimethoprim-sulfa 20, and multidrug-resistance and treatment failure often leads to euthanasia in affected dogs. Carbapenem has been reported as an alternative antibiotic in dogs with granulomatous colitis and fluoroquinolone-resistant E. coli 21, but it is a critically important class of antibiotics in human medicine and is prohibited for veterinary use in many countries.
At this time point, the owner agreed to try FMT. The first procedure was followed by 2-3 days of flatulence, smelly feces and mild vomiting, and although the fecal quality then improved slightly, diarrhea recurred after 14 days. The second FMT 16 days after the first one was again followed by 2-3 days of similar signs, but this time the subsequent improvement of the fecal quality was more pronounced. Harold was also started on a multi-strain probiotic at this point. After FMT 3, no side effects occurred, the stool was normal and Harold was much more active and alert. He continued on the multi-strain probiotic every other day along with a hydrolyzed protein diet, and at the latest check-up (14 months after FMT 3), he was still in complete remission.
Ina is an intact female German Shepherd who had shown signs of CE since she was a year old, although these had responded to a hydrolyzed protein diet combined with a multi-strain probiotic. At 2 years of age she developed a urinary tract infection that was treated with (unknown) antibiotics by her local veterinary clinic. After the antibiotics, Ina became markedly flatulent, lethargic and hyporectic, clinical signs similar to those she presented with during the initial work-up for CE. Intestinal dysbiosis following antibiotic treatment was suspected, and analysis of a fecal sample showed a dysbiosis index* of 6.2 (Figure 7), consistent with severe dysbiosis. Ina was still lethargic and hyporectic six weeks after the antibiotics had finished, and a FMT series was scheduled. After FMT 1, Ina improved but relapsed before FMT 2; however, after two further FMT treatments she was again extremely alert with a normal appetite, and the dysbiosis index went from severe to mild classification after FMT 1, followed by normobiosis after FMT 2 (Figure 7).
Fecal microbiota transplantation (FMT) is a promising treatment in companion animal gastroenterology, with published studies reporting very few unwanted side effects. At present, FMT dosage and protocol will vary somewhat among small animal clinicians, but a consensus on treatment guidelines is pending. FMT can be used in various cases, including puppies with parvovirus infection, and appears to be beneficial for the treatment of many dogs with poorly responsive chronic enteropathies. Treatment with FMT may also allow reduction in the use of antibiotics in selected cases.
*The Dysbiosis Index is provided by the GI Laboratory at Texas A&M University, USA
Zhang Z, Mocanu V, Cai C, et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome – a systematic review. Nutrients 2019;11(10):E2291. DOI:10.3390/nu11102291
Green JE, Davis JA, Berk M, et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes 2020;12(1):1-25. DOI:10.1080/19490976.2020.1854640
Pereira GQ, Gomes LA, Santos IS, et al. Fecal microbiota transplantation in puppies with canine parvovirus infection. J. Vet. Intern. Med. 2018;32(2):707-711. DOI:10.1111/jvim.15072
Niina A, Kibe R, Suzuki R, et al. Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease. Biosci. Microbiota Food Health 2021;40(2):98-104. DOI:10.12938/bmfh.2020-049
Toresson L, Steiner JM, Lidbury JA, et al. Clinical effects of fecal microbiota transplantation in dogs with chronic enteropathy. J. Vet. Intern. Med. 2021;36(6):3090.
Linda Toresson
Dr. Toresson graduated from the Swedish University of Agricultural Science in 1995 and has worked at the Evidensia Specialist Animal Hospital in Helsingborg since 1996 Read more
Addison’s disease may not be the first diagnosis that comes to mind when a dog with gastrointestinal signs presents, but this possibility should not be dismissed, as Romy Heilmann describes.
Giardia infection is commonly identified in dogs, but deciding if it is a significant finding, and selecting the best treatment approach for a given situation, can often raise questions in practice; this article aims to provide some answers for the clinician.
Protein-losing enteropathy is a heterogenous syndrome in dogs, which means that the clinician should approach each case as an individual.
There is now strong evidence that there are significant links between the gut and the kidneys, and that gastrointestinal health may be a key consideration when treating kidney disease, as discussed in this article